Example 1
For the function,
(a) Find the tangent line to the function at the specified value of x.
(b) Use the tangent line from (a) to estimate the value of the function at (x + Δ x).
f (x) = x3 + 2x + 1, x = 1, Δ x = 0.2
Example 2
For the function,
(a) Find the tangent line to the function at the specified value of x.
(b) Use the tangent line from (a) to estimate the value of the function at (x + Δ x).
Example 3
For the function,
(a) Find the tangent line to the function at the specified value of x.
(b) Use the tangent line from (a) to estimate the value of the function at (x + Δ x).
f (x) = log2 x, x = 8, Δ x = .01
Example 4
For the function,
(a) Find the tangent line to the function at the specified value of x.
(b) Use the tangent line from (a) to estimate the value of the function at (x + Δ x).
f (x) = 4x + ex, x = 0, Δ x = 0.05
Example 5
For the function,
(a) Find the tangent line to the function at the specified value of x.
(b) Use the tangent line from (a) to estimate the value of the function at (x + Δ x).
Example 6
If f (3) = 4.2 and f '(3) = 0.15, estimate f (3.1).
Example 7
If and
, estimate
.
Example 8
The picture below shows the tangent line to f at -1. Estimate f (-0.9).
Example 9
The picture below shows the tangent line to f at x = 3. Find f '(3).
Example 10
If f (2) = 7 and a tangent line approximation at x = 2 estimates f (2.1) to be 7.2, what is f '(2)?
Example 11
Let f (x) = 3x2 – 4x + 1. Use a tangent line approximation to estimate f (2.01).
Example 12
Let f (x) = 7x2 – 3x + 4. Use a tangent line approximation to estimate f (2.99).
Example 13
Let f (x) = ex. Use a tangent line approximation to estimate f (0.05).
Example 14
Let f (x) = 2x. Use a tangent line approximation to estimate f (3.02).
Example 15
Let f (x) = sin (5x). Use a tangent line approximation to estimate f (3).
Example 16
The function y = f (x) is a solution to the IVP
Estimate f (0.5).
Example 17
The function y = f (x) is a solution to the IVP
Estimate f (-½).
Example 18
The function y = f (x) is a solution to the IVP
Estimate f (2.01).
Example 19
The function y = f (x) is a solution to the IVP
Approximate f (6.95).
Example 20
The function y = f (x) is a solution to the IVP
Approximate f (3.01).