Example 1
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 2
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 3
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 4
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 5
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 6
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 7
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 8
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 9
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 10
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 11
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 12
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 13
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 14
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 15
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 16
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 17
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 18
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 19
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 20
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 21
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.
Example 22
For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.